# Department of Mathematical and Computational Sciences <br> National Institute of Technology Karnataka, Surathkal 

## MA222-Computational Linear Algebra <br> Problem Sheet - 3

## Block Matrices and Algorithms

1. Adapt strass so that it can handle square matrix multiplication of any order. Hint: If the "current" $A$ has odd dimension, append a zero row and column.
2. Prove that if

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 r} \\
\vdots & \ddots & \vdots \\
A_{q 1} & \cdots & A_{q r}
\end{array}\right]
$$

is a blocking of the matrix $A$, then

$$
A^{T}=\left[\begin{array}{ccc}
A_{11}^{T} & \cdots & A_{q 1}^{T} \\
\vdots & \ddots & \vdots \\
A_{1 r}^{T} & \cdots & A_{q r}^{T}
\end{array}\right]
$$

3. Suppose $n$ is even and define the following function from $\mathbb{R}^{n}$ to $\mathbb{R}$ :

$$
f(x)=x(1: 2: n)^{T} x(2: n)=\sum_{i=1}^{n / 2} x_{2 i-1} x_{2 i}
$$

(a) Show that if $x, y \in \mathbb{R}^{n}$ then

$$
x^{T} y=\sum_{i=1}^{n / 2}\left(x_{2 i-1}+y_{2 i}\right)\left(x_{2 i}+y_{2 i-1}\right)-f(x)-f(y)
$$

(b) Now consider the $n$-by- $n$ matrix multiplication $C=A B$. Give an algorithm for computing this product that requires $n^{3} / 2$ multiplies once $f$ is applied to the rows of $A$ and the columns of $B$.
4. Prove Lemma 1.3.2 for general $s$.

Hint. Set $p_{T}=p_{1}+\cdots+p_{\gamma-1} \quad \gamma=1: s+1$ and show that $c_{i j}=\sum_{\gamma=1}^{s} \sum_{k=p_{\gamma}+1}^{p_{\mu+1}} a_{i k} b_{k j}$.
5. Use Lemmas 1.3.1 and 1.3.2 to prove Theorem 1.3.3. In particular, set

$$
A_{\gamma}=\left[\begin{array}{c}
A_{1 \gamma} \\
\vdots \\
A_{q \gamma}
\end{array}\right] \quad \text { and } \quad B_{\gamma}=\left[\begin{array}{lll}
B_{\gamma 1} & \cdots & B_{\gamma r}
\end{array}\right]
$$

and note from Lemma 1.3.2 that

$$
C=\sum_{\gamma=1}^{s} A_{\gamma} B_{\gamma}
$$

Now analyze each $A_{\gamma} B_{\gamma}$ with the help of Lemma 1.3.1.

